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Die Fachgruppe FoMSESS1 im GI-Fachbereich Sicherheit beschäftigt sich mit der Anwendung von For-
malen Methoden und Software Engineering in der Entwicklung sicherer Systeme.

In ihren Jahrestreffen bietet die Fachgruppe die Möglichkeit, über aktuelle Forschungsarbeiten zu berichten
und zu diskutieren und sich mit Gleichgesinnten zu vernetzen.

Nach dem ersten Online-Jahrestreffen im Jahr 2020 wurde auch das Jahrestreffen 2021 online durch-
geführt. Auch diesmal gelang es, zwei Nachmittage mit interessanten Vorträgen und lebhaften Diskussionen
zu füllen. Die Vortragenden bekamen auch dieses Jahr die Möglichkeit, Extended Abstracts ihrer Beiträge zu
verfassen, um diese auf der FoMSESS-Webseite zu veröffentlichen. Das Ergebnis sehen Sie gerade vor sich.

Viel Spaß beim Lesen!

Zoltan Mann, November 2021

1https://fg-fomsess.gi.de
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A voting system should not merely report the outcome: it should also provide sufficient evidence
to convince reasonable observers that the reported outcome is correct. Many systems, notably
paperless DRE machines still in use in US elections, fail this requirement, and for Internet Voting
systems it is completely unclear how to implement the requirementat all. Rivest and Wack
proposed the principle of software independence (SI) as a guiding principle and requirement for
voting systems [2]. In essence, a voting system is SI if its reliance on software is “tamper-evident”,
that is, if there is a way to detect that material changes were made to the software without
inspecting that software. This important notion has so far been formulated only informally.

In my talk, I provide more formal mathematical definitions of SI. This exposes some subtleties
and gaps in the original definition, among them: what elements of a system must be trusted for
an election or system to be SI, how to formalize “detection” of a change to an election outcome,
the fact that SI is with respect to a set of detection mechanisms (which must be legal and
practical), the need to limit false alarms, and how SI applies when the social choice function is
not deterministic.

This talk is based on joint work with Wojciech Jamroga, Peter Y.A. Ryan, Steve Schneider and
Philip B. Stark [1].
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Verified Synthesis and Test of Safety Supervisors in
Human-Robot Collaboration – Extended Abstract

Mario Gleirscher, Universität Bremen
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Abstract

This extended abstract summarises our ongoing research into a correct-by-construction approach
to designing specific discrete-event controllers called safety supervisors. The approach has been
demonstrated in a human-robot collaboration setting but has the potential to be used in other safety-
critical domains where regulations require safety-related devices to be certified before use.

The increased use of artificial intelligence (AI) technologies, particularlymachine learning algorithms,
in safety-critical automation (i.e., autonomous aerial, ground, and marine vehicles; robotic transportation,
logistics, and manufacturing; medical, agricultural, building, and home automation) has vast implications
on the modernisation of automatic safety measures used across automation domains. The operation of
systems in such domains is, for many reasons, highly regulated, and certification requires the assurance of
a conglomerate of critical system properties called operational safety. These properties include functional
safety in terms of fail-safe properties to be shown of the involved electronic and software-based control
systems. Traditionally, the assurance of functional safety focuses on arguing that the nominal behaviour
of a system fulfils its specification and, more importantly, potentially dangerous deviations from this
specification (i.e., hazardous failures) are covered by safety functions (e.g. safety monitoring, control,
and shutdown devices). Technological progress coincides with a regular revision of these functions.
Furthermore, increased automation has led to an extension of this assurance strategy, namely to show
that the specification of nominal behaviour actually reflects operational safety as understood by domain
experts and risk analysts. In domains, such as advanced driver assistance, this aspect of assurance is
known as safety of the intended function (SOTIF) and standardised in ISO/PAS 21448 (2019).

Human-robot collaboration is a domain where controllers of robots and machines have to guarantee
safety under uncertainty, for example, a high probability of collision freedom, a reduction of impact
frequency, or impact force minimisation, while dealing with a complex uncontrollable environment in-
cluding humans. Modern human-robot collaboration strives for finer-quality interaction between humans
and machines as well as more autonomy of the involved robots and other machines to increase the pro-
ductivity, the complexity of manageable tasks, and the ergonomic division of labour. This development
calls for a paradigm shift from the traditional safety monitoring and shutdown philosophy towards a more
holistic notion of safety supervision to be delivered by functions of a machine’s control system. We speak
of these functions as safety supervisors. Supervisors can include complex logic—sensing, computation,
and actuation, even using AI—to ensure safe optimal collaboration between humans and machines.

Challenging for engineers is the reoccurring question of how one can derive a controller—by design,
one that includes a supervisor—such that the nominal or failure behaviour of the controlled process fulfils
the requirement of operational safety for that process? Particularly, how can one integrate application
control with safety supervision? And, for validation and verification, how does one represent these
requirements, that is, the assumptions about the environment as well as the guarantees of the controller?

3



Among the numerous ways to do this, we have chosen a stochastic action language and a probabilistic
temporal logic to model the process, to specify the requirements, and to describe the controller designs
in order to reason about supervisor behaviours in a clean and well-understood way through transition
systems. Moreover, based on this framework, we propose a correct-by-construction approach including
(a) early supervisor validation, (b) verified synthesis of abstract (platform-independent) supervisors, and
(c) the generation and verification of concrete (platform-specific) supervisor implementations.

Stage (a) takes advantage of task and risk modelling (Gleirscher, Calinescu, and Woodcock 2021)
and applies stochastic model checking for model correctness proofs based on operational safety prop-
erties (Gleirscher, Calinescu, Douthwaite, et al. 2021). Stage (b) uses Markov decision process policy
synthesis (Gleirscher and Calinescu 2020) for the extraction of an optimal abstract supervisor from a
synthesised policy. Stage (c) utilises recent advances in complete conformance testing (Huang et al.
2016) to verify the translation of abstract supervisors into executable supervisor implementations.

One of the advantages of the outlined approach (Gleirscher and Peleska 2021) is that the stages (b)
and (c) exhibit a high degree of automation. Hence, during a SOTIF-style assurance, domain experts and
verification engineers can focus on the model and requirements validation part while receiving support
through model checking. They can, for example, focus on translating regulatory requirements into a
complete and non-vacuous set of properties to be checked of the process model. This way, validation
rules out common-cause mistakes, a typical weakness of correct-by-construction software engineering
approaches. Furthermore, the separation of synthesis into two stages (i.e., (b), automata synthesis and,
(c), code generation) allows the abstract supervisor to be kept simple and facilitates efficient synthesis in
more complex applications. This separation also provides freedom for code generation with manually
crafted (interface) refinements needed for the integration into potentially several desired control platforms.
Error possibilities coming along with this freedom can then be uncovered by complete conformance
testing (Huang et al. 2016), given the assumptions for this form of testing hold (i.e., abstract and concrete
controllers have the same number of control states; inputs to the concrete controller form equivalence
classesmodulo an isomorphism to the inputs of the abstract controller). A successfully tested conformance
then proves—by establishing observational equivalence between abstract and concrete supervisors—that
the translation from a valid model has resulted in a correct supervisor implementation.

In our previous research, we have demonstrated a preliminary version of this approach in the context
of a case study on human-robot collaboration in manufacturing (Gleirscher, Calinescu, Douthwaite, et al.
2021; Gleirscher and Peleska 2021). We are convinced that the outlined approach is generic enough to
be useful in many other AI-driven and safety-critical application domains as well.
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Abstract. Modern electronic voting systems (e-voting systems) are de-
signed to provide not only vote privacy but also (end-to-end) verifiability.
Several verifiable e-voting systems have been proposed in the literature,
with Helios being one of the most prominent ones. Almost all such sys-
tems, however, reveal not just the voting result but also the full tally,
consisting of the exact number of votes per candidate or even all single
votes. There are several situations where this is undesirable. For example,
in elections with only a few voters (e.g., boardroom or jury votings), re-
vealing the complete tally leads to a low privacy level, possibly deterring
voters from voting for their actual preference. In other cases, revealing
the complete tally might unnecessarily embarrass some candidates. Of-
ten, the voting result merely consists of a single winner or a ranking of
candidates, so revealing only this information but not the complete tally
is sufficient. This property is called tally-hiding and it offers completely
new options for e-voting.
In this talk, I will cover some of the main security properties modern
e-voting system should satisfy and discuss their sometimes surprising
relationships. I will also present the first provably secure verifiable and
tally-hiding e-voting system, called Ordinios [1,2]. Finally, I will briefly
discuss the formal analysis of such and other e-voting systems.

This work was in part funded by the Deutsche Forschungsgemeinschaft
(DFG) KU 1434/11-1 and the Center for Integrated Quantum Science
and Technology (IQST).
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“Everything should be made as simple as possible, but no simpler.”

— A. Einstein

Introduction We present a novel, end-to-end verifiable scheme, Hyperion, in-
spired by the Selene scheme [1], which similarly provides highly transparent
verification: voters check their vote directly in plaintext in the tally. It has a
number of advantages including eliminating the tracker collision threats in Se-
lene, indeed our construction does not need trackers for verification. The new
scheme should give voters a greater sense of privacy.

In the original Selene, vote/tracker pairs are revealed in the tally on the
Bulletin Board. Voters are later notified of their tracker: by providing them with
a private “alpha” term which along with their private, trapdoor key, opens their
commitment to reveal their tracker. As long as the trackers remain private and
deniable ballot privacy is preserved. However, some voters, understandably, find
the public posting of the trackers alongside the votes troubling. Furthermore,
Selene suffers from the possibility of a coercer claiming that the alternate tracker
proffered by a coerced voter is their own.

Hyperion, by contrast, does not publicly reveal trackers, indeed, we can do
away entirely with trackers. Instead, the voter identifies her vote in the tally by
identifying the commitment which, along with her “alpha” term and her trapdoor
key opens to a constant, e.g. the identity 1. This is rather like identifying your
house by finding the door that opens to your key. This is still deniable, but the
mechanism is now different: a coerced voter identifies a commitment paired with
the coercer’s required vote and, if necessary, computes using her trapdoor secret
key, the fake alpha term that opens this to 1.

At first glance this seems to counter the tracker collision threat, but we have
just shifted the problem: now the coercer might claim that the commitment
the voter points to is theirs. To counter this we propose a further innovation:
each voter gets an individual view of Bulletin Board BB. Each view is veifiably
derived from the BB with its own, independent shuffling. Thus the rows and
betas appear in a different form and order for each voter, so even a shoulder-
surfing coercer cannot identify his beta in the voter’s view.
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The Setup Signing keys for the voters, PKi are published on the master bulletin
board, one row per voter. For voter Vi trapdoor keys, xi and hi := gxi , are
generated by the voter’s app and hi is registered along with the casting of the
vote, along with suitable ZK proofs of knowledge of xi.

Voting Voting is much as in Selene: Vi sends an encryption of her vote with
the associated plaintext awareness and well-formedness proofs, and her public
trapdoor key hi along with ZK proofs of knowledge of xi. We denote the con-
catenation of these proofs by Πi. This is signed and posted to the master BB
against PKi:

PKi, Signi({Votei}, hi, Πi)

Tellers now generate the analogues of the alpha and beta terms of Selene: each
trapdoor public key hi is raised to a fresh, secret random ri. The corresponding
(pre-)alpha term gri is kept secret for the moment by the tellers:

PKi, Signi({Votei}, hi, Πi), h
ri
i

Tallying On the BB, ballots with valid signatures and proofs are identified and
for these we extract the encrypted votes and beta commitments:

({Votej}, hrjj )

These are now put through verifiable, hybrid, parallel mixes: the vote terms
are subjected to a conventional re-encryption mix, but the commitment terms are
subjected to an “exponentiation” mix: all raised to a common, secret exponent s.
Such mixes can be implemented using Verificatum in suitable modes, [2]. Finally,
the votes are verifiable decrypted outputting:

(Votej, h
rj ·s
j )

The rows are now sorted to group votes for the same candidate together. For
Vi we now create an individual view by applying a further parallel mix, but here
we just permute and re-randomise within the candidate groups. For each voter
there will be a different, independent common exponent si for the exponentiation
mix of the commitment terms:

(Votej, (h
rj
j )s·sj )

The mix tellers keep secret for now the “alpha” terms: αi = gri·s·si .
Note that the commitment terms are not opened or decrypted, thus the

plaintext votes appear paired with cryptographic blobs.
At notification time, αi is sent to Vi who raises this to xi and finds the

match among the beta terms in her view, so identifying her vote. In the event of
coercion, Vi identifies a row containing the coercer’s required vote and computes
the alpha which, when raised to xi, matches the beta in this row.
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Discussion We note that the individual views are only necessary if we want to
fully counter the tracker/commitment collision problem and render the scheme
fully coercion resistant. Even without the individual views the scheme provides
the same guarantees as Selene (e.g. receipt-freeness and coercion mitigation). It
is significantly simpler and provides a greater sense of privacy than Selene.

We can in fact retain trackers in our construction, and this may inspire a
greater sense of assurance in the verification. In this case, we assign trackers
in the setup phase, as in Selene. Now a coerced voter computes a fake alpha
that opens the alternative beta to her own tracker, i.e., no need to identify a
fake tracker. Furthermore, the association of trackers with voters can now be
made public! This allows universal verification that all the trackers are distinct.
Note that in this construction each voter only see their own tracker in their own
view. Nowhere are all the trackers displayed alongside the votes, so the privacy
concerns of Selene do not arise.

Conclusions We have outlined Hyperion, a new scheme, with three variants,
that provides voters with a similarly direct, intuitive way to verify that their
votes are correctly included in the tally. It is conceptually much simpler than
Selene and avoids the tracker collision threats, indeed we can do away with
trackers altogether. Furthermore, voters should feel more comfortable with this
scheme as it does not involve the public posting of tracker/vote pairs.

Achieving full coercion resistance comes at the cost of introducing individual
views for each voter, but this should give voters a greater sense of privacy. The
individual boards may be better suited for smaller elections, where the collision
threat is more troublesome. The construction without individual boards, may be
useful for large elections where the collision problem is anyway less important, or
contexts in which coercion threats are deemed mild, e.g. boardroom voting. We
have also described a variant that retains the trackers, but having the remarkable
property that now voters do not need to identify a fake tracker, and indeed the
voter/tracker association can be made public (inter alia demonstrating that each
voter gets a unique tracker).

We stress though that the integrity of the voters’ verification checks relies on
their secret trapdoor key not being compromised. We do not therefore recom-
mend that Hyperion be used for critical, binding elections.

Full details of the constructions and proofs will appear in the full version of
this paper. The authors acknowledge support of the Luxembourg National Re-
search Fund and the Research Council of Norway for the joint project SURCVS.
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Modular Construction of Verified Voting Rules
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Abstract. Voting rules aggregate multiple individual preferences in order to make collective decisions.
Commonly, thesemechanisms are expected to respect amultitude of different fairness and reliability prop-
erties, e.g., to ensure that each voter’s ballot accounts for the same proportion of the elected alternatives,
or that a voter cannot change the election outcome in her favor by insincerely filling out her ballot.
In this talk, I present a formal and systematic approach for the flexible and verified synthesis of voting
rules from composable coremodules to respect such properties by construction. Formal composition rules
guarantee resulting properties from properties of the individual components, which are of generic nature
to be reused for various voting rules. We provide a prototypical logic-based implementation with proofs
for a selected set of structures and composition rules within the theorem prover Isabelle/HOL and a
Prolog-based extension for automatic synthesis of voting rules and the corresponding proofs.

1 Introduction

In an election, voters cast ballots to express individual preferences about eligible alternatives. From
these preferences, a collective decision, i.e., a set of elected alternatives, is determined using a voting
rule. Voting rules are commonly designed to meet various expectations for fairness and reliability,
but no single general rule caters for every requirement, and every rule shows paradoxical behavior
for some situation [1]. The axiomatic method permits the analysis of desired behavior by comparing
and characterizing voting rules via rigorous guarantees in the form of formal properties. Designing
voting rules towards such properties is generally challenging as their trade-off is inherently difficult
and error-prone.
Contribution. We present an approach for the systematic and formal design of voting rules from
compact composable modules with formal properties guaranteed by construction. This work gives
the core component type and compositional structures, e.g., for sequential, parallel and loop com-
position, and illustrates how composition rules formally establish common social choice properties.
Using a Prolog-based search, we exploit the simple and rigidmodule structures and devise an auto-
mated pipeline that produces executable software and Isabelle proofs given the desired properties.

With the exception of the Prolog-based and automated synthesis, this and the following parts
are heavily based on two previous works [5, 6].

2 Property-Oriented Composition of Voting Rules

Electoral Modules. The foundation of our approach are electoral modules, a generalization of voting
rules. Voting rules elect a set of alternatives from a profile, i.e., a sequence of ranked ballots, and
a nonempty set of alternatives �. Electoral modules are more general as they do not need to make
final decisions, but instead partition � into elected, rejected and deferred alternatives. Hence, if an
electoral module always produces a nonempty set of elected alternatives �elected, it directly induces
a voting rule which elects �elected.
Compositional Structures. Our approach’s core structures are sequential, parallel and loop composi-
tion, as well as the revision of decisions by prior modules. When composing two electoral modules
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< ⊲ = sequentially, the second module = only decides on alternatives which < defers and cannot
reduce the alternatives already elected or rejected. A parallel composition < | |0= delegates the two
set-triples of < and = to an aggregator 0, another component type which combines two such triples
into one triple. Moreover, we may revise choices from prior modules and defer them for further
decisions using a revision structure ↓. Finally, a loop composition < 	C reiterates a module <
sequentially until either <’s iteration reaches a fixed point, or a termination condition C holds, i.e., a
component type which is simply a predicate on a triple of sets of alternatives.
A Simple Example. The well-known Baldwin’s rule [2] can be sequentially composed with a loop
structure of amodule eliminating the alternativewith the lowest Borda score and terminatingwhen
only one alternative remains, and amodule which elects all deferred alternatives. This construction
directly establishes, e.g., the Pareto property and Condorcet consistency as the loop may never
reject a Condorcet winner and always rejects Pareto-dominated alternatives.

3 Automated Synthesis for Trusted and Executable Voting Rules

A Component Library. Given our simple and rigid module structure, we devised components
and composition rules for various well-known voting rules, including representative examples for
Condorcet and scoring rules, as well as filtering modules that are useful for the prominent class of
knockout tournaments. We implemented this library within Isabelle/HOL together with selected
composition rules that enable proofs for social choice properties such as the Condorcet criterion,
monotonicity, homogeneity, reinforcement, and anonymity.
Translation to Prolog and Automated Search. Consequently, we take the type information, as-
sumptions and proved lemmas from functions and theorems of the Isabelle code and translate
it to simple Prolog formulas. Using the built-in Prolog search, this yields a decidable program
that, given the desired social choice properties, produces voting rule compositions for which the
properties are fulfilled.
Automated Synthesis of Voting Rules. We can, moreover, play this back to our Isabelle code
in order to verify the obtained composition directly within Isabelle. Besides a readable Isabelle
proof, given that the modules and structures themselves are comparatively simple, we can also
use Isabelle to generate verified and executable programs [9], e.g., in the form of Scala code, for
the found composition. With a few more optimizations to the Prolog search algorithm, we end
up with a flexible pipeline that, given the desired properties in higher-order logic, uses the rules,
components, and structures in the Isabelle framework, builds a synthesis tool with executable code
and a trustworthy proof that the synthesis is correct.

4 Related Work and Conclusion

Related Work. Our electoral modules are based on less-formal components for hierarchical elec-
toral systems from [4]. Other work designs voting rules lessmodularly for statistically guaranteeing
social choice properties by machine learning [10]. Prior modular approaches target verification [7]
or declarative combinations of voting rules [3], but ignore social choice properties. Specific compo-
sitional structures as presented in [8] are readily expressible by our structures.
Conclusion.Our approach enables flexible and intuitive compositions of voting rules from a small
number of structures with precise and general interfaces, easily extended with further modules.
This allows to formally establish common social choice properties fromgiven component properties
by rigorous composition rules. With our Prolog-based extension, we obtain a powerful automated
synthesis tool that gives us verified program code that implements a voting rule which fulfills the
queried social choice properties.
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