
10 Steps to ISO26262-compliant Model-based Software Development

Hartmut Lackner and Heiko Dörr
Model Engineering Solutions GmbH
Mauerstr. 79, 10117 Berlin, Germany

{hartmut.lackner | doerr}@model-engineers.com

Abstract

Testing of large software systems is a major challenge
for the automotive industry. All test activities, par-
ticularly for safety-critical components, must be per-
formed in adherence to the ISO26262 standard. The
development team of a software project faces a multi-
tude of requirements on the testing process to achieve
ISO26262-compliance. These requirements are de-
fined in a generic way such that an interpretation be-
fore implementation is required – and of course, they
shall be implemented in cost-minimal ways.

We propose a 10-step strategy to achieve an
ISO26262-compliant testing process. This strategy
relates ISO26262 requirements with state-of-the art
methods and approaches for virtual testing of soft-
ware components. It is based on a prioritization of
the requirements of ISO26262 with regard to their im-
pact on the quality of the software. We conclude the
contribution with considerations for automation.

1 Introduction

Model-based software development is a standard soft-
ware development approach for automotive embed-
ded software [3]. Enhancing a software develop-
ment process to comply with ISO26262 is a chal-
lenge. One challenge represents the safety standard
itself: as a standard, it defines abstract, general re-
quirements and leaves it to the software develop-
ment team to assess their respective relevance to the
project and implement them. This assessment is nec-
essary as ISO26262 considers both code-based and
model-based software development and contains re-
quirements that are applicable for only one of both ap-
proaches. In practice, interpretation, assessment and
implementation of requirements presuppose compre-
hensive knowledge of state-of-the art methods, tools
available on the market, and individual project con-
ditions.

How to make the best use of the often very tight
project budget is made difficult by uncertainty regard-
ing the advantages and disadvantages of methods and
corresponding tools. Further issues that need to be
addressed concern the clarification and assignment of
roles and responsibilities as well as the definition of
interfaces between different teams and departments.

For most software development teams, there is no

reasonable chance of addressing the outlined ques-
tions all at once, due to insufficient project resources.
Hence, we provide a suitable strategy for prioritizing
the requirements based on an assessment of the nec-
essary actions. We weigh up the impact of an activ-
ity onto the quality of the developed software and the
costs for introducing and applying it. Hence, the main
contributions of this paper are two-fold: 1) an inter-
pretation of the ISO26262 requirements for testing; 2)
a prioritization of the ISO26262 requirements that al-
lows ISO26262-compliance to be efficiently achieved.

The remainder is structured as follows: In Sect. 2,
we briefly introduce the foundation of model-based de-
sign as applied in the automotive industry. In Sect. 3,
we present the requirements and our partitioning into
three groups. Then, we present our 10-step strategy
in Sect. 4, before we conclude in the final section.

2 Foundations

In the automotive domain, the approach for develop-
ing embedded software has changed in recent years:
today, model-based development provides an efficient
approach for the software development of embedded
systems, where executable graphical models are used
at all development stages. Figure 1 illustrates the
model-based development process in a simplified way.
Here, functional software models are used to ver-
ify functional requirements as an executable speci-
fication, and also as so-called implementation mod-
els used for target code generation. The models
are designed with common graphical modeling lan-
guages, such as Simulink and Stateflow from The
MathWorks [2] which are used in combination with
code generators such as TargetLink by dSPACE [1] or
the Real-Time Workshop/Embedded Coder by The
MathWorks. A comprehensive survey of quality as-
surance for model-based development is given in [4].

Most frequently used means for safe-guarding
model-based development are: guideline checking and
testing models. Modeling guidelines, e.g. enforce use
of modeling elements compatible to the employed code
generator or that error-prone modeling elements are
avoided. In testing models, model verification (model-
in-the-loop, MiL) ensures that the model behavior ful-
fills the requirements; and code verification (software-
in-the-loop, SiL) shows equivalence of code and model,



Figure 1: Model-based Development Process

which also implies fulfillment of requirements.

3 ISO26262 Requirements on Software
Development

A key element within part 6 of ISO26262 is a V-model
based software development process with well-known
development phases as shown in Figure 2. For each of
the development phases, a set of requirements is de-
fined. Practically speaking, the requirements in part 6
of ISO26262 bring nothing technically new to software
development but rather are requirements on ensuring
quality of software.

Figure 2: Model-based development process with an-
notated steps in circles.

We group those requirements into measures to im-
plement a systematic development process, measures
for constructive quality assurance and measures for
analytical quality assurance. Measures for construc-
tive quality assurance are used to build quality in.
The main goal of constructive quality assurance is the
avoidance of failures. A typical example for construc-
tive quality assurance is design guidelines that are em-
ployed to avoid error-prone design patterns. Measures
for analytical quality are used to identify quality issues
such as detection of implementation failures. Testing
is part of analytical quality assurance.

We summarized the ISO26262 requirements for our
strategy into ten steps. The name of each step points
out the focus of the activities necessary to implement
the requirements. Also, we present the steps in groups
of the measures as identified above.

Systematic Development Process

1. Tailor development process [6.5]

2. Adjust tool chain [6.5]

Constructive Quality Assurance

3. Create design specifications [6.7, 6.8]

4. Check and review models [6.8]

Analytic Quality Assurance

5. Test focus: requirements [6.9, 6.10]

6. Back-to-back tests [6.9, 6.10]

7. Test focus: interfaces [6.9, 6.10]

8. Test focus: robustness and resources [6.9, 6.10]

9. Test focus: error guessing [6.9, 6.10]

10. Check unspecified functionality [6.10]

4 10-Step Strategy

The strategy presented here, reflects our experiences
supporting our customers in achieving ISO26262 com-
pliant model-based software development processes.
One of our key observations is that defining an ef-
ficient development process is a step-by-step process
of introducing new methods and tools, working with
these tools in real projects, and defining rules and
guidelines based on experiences gained. This is why
we propose a bottom-up approach for defining a suit-
able development process, starting with detecting fail-
ures, then avoiding failures, and finally implementing
a compliant process. In the following, we present the
steps in prioritized order, including our own experi-
ences and references to the required activities by the
standard.

4.1 Failure Detection

We consider ISO26262 requirements aimed at detect-
ing failures in the model as the most important. These
requirements are contained in step 1 Test focus: re-
quirements, step 2 Back-to-back tests and step 3 Test
focus: interfaces. According to our experience, we
can expect the most significant benefit with regard
to the quality of the model to come from testing.
For this reason, we propose to fulfill the ISO26262
for requirements-based testing, interface testing and
back-to-back testing first.

1 Test focus: requirements Requirements-based
testing allows the systematic detection of implementa-
tion failures and of failures due to incomplete or incon-
sistent requirements (6-9.4.3 T10-1e, 6-10.4.3 T13-1e).
An indispensable precondition for requirements-based
testing is documented requirements and a defined re-
quirements management. The coverage between re-
quirements and test specifications and the structural
coverage are necessary to validate the test specifica-
tion (6-9.4.5, T12-1a/1b). Only the combination of
test results and coverage data allows reliable state-
ments regarding the presence or absence of failures in
the model



2 Back-to-back tests This step ensures that the
code generated from the model complies with the
model (6-9.4.3 T10-1e, 6-10.4.3 T13-1e). This is
achieved by re-executing the tests in either SiL or PiL
mode and comparing these results with those from
the MiL testing. The combination of MiL and back-
to-back testing makes it easier to detect failures that
depend on code-generation-specific model properties
such as target-processor-specific data types. Further-
more, we propose measuring the requirements cover-
age in addition to the unit testing level, also on the
integration testing level (6-10.4.5).

3 Test focus: interfaces ISO26262 requires sys-
tematic testing of interfaces to ensure they are imple-
mented correctly (6-9.4.3 T10-1b, T11, 6-10.4.3 T13-
1b, T14). We observe that addressing external and
internal interfaces during testing explicitly allows the
early detection of failures that would otherwise remain
unnoticed until later integration testing phases, where
it might be more difficult to localize them. For soft-
ware with an ASIL C or D rating, ISO26262 requests
application of coverage metrics for addressing the ex-
ecution of the software functions (6-10.4.5, 6-10.4.6,
T15). These coverage metrics must be assessed for
integration tests but not for unit testing.

4.2 Failure Avoidance

The second group (step 4 to 6) includes mainly
ISO26262 requirements that contribute to avoiding
failures. The benefit is different compared to the
first group of requirements. These constructive qual-
ity assurance methods contribute to avoiding specific
classes of failures. Not only do they have a positive
impact on the quality of the model and the generated
code, but they also improve the efficiency of the de-
velopment process. Modeling guidelines contribute to
avoiding subtle failures such as unnoticed erroneous
data type conversions or missing initializations. Such
failures may require a lot of time for analyzing after
their detection in the test phase. Modeling guidelines
improve the efficiency by additionally improving the
readability and maintainability of models. A consis-
tent model layout considerably reduces the time for
review and failure analysis.

4 Check and review model Required activities
are the application of modeling guidelines (6-5.4.7-T1,
6-8.4.4-T8) and manual reviews (6-8.4.5-T9-1a/1b).
We have noticed that these activities are crucial as
according to our experiences, models are used, mod-
ified and enhanced over quite long periods of time.
Our frequently used approach for defining a guideline
set consists of starting with an initial guideline set
and applying it to the available models. Based on the
results, the guideline set is then adapted e.g. by re-
moving guidelines, replacing guidelines with alterna-
tive guidelines or parameterizing guidelines according
to project needs. This procedure contributes to the

discussion concerning the relevance of guidelines be-
cause it takes into account company-specific modeling
practices right from the beginning.

Concerning the manual reviews, we propose the ex-
ecution of a formal review independent on the ASIL
level of the software unit as according to our experi-
ence this will achieve better results, provided that it
is based on a review checklist.

5 Test focus: error guessing and static code
analysis For error-guessing, the test engineer makes
assumptions about possible failures of the software
and defines tests to address them (6-9.4.4, T11,
6-10.4.4,T14). A skilled tester uses experiences
from previous projects and modeling-language specific
knowledge to define the test cases, hence this method
is also known as experienced-based testing.

Also measuring MC/DC coverage for ASIL D rated
components is grouped into this step, since ISO26262
does not prescribe a fixed percentage for MC/DC but
a sufficient percentage (6-9.4.5, T12). This require-
ment may seem too imprecise, but defining a fixed
value would make the handling of variants in the soft-
ware almost impossible. Of course, a rational must be
provided for the actual MC/DC coverage value, if it
deviates from 100%.

Furthermore, static code analysis is required for
such components (6-8.4.5, T9-1g). To employ static
code analysis in practice, it should be restricted with
regard to types of failures and in particular parts of
the software. Otherwise, static analysis can give un-
clear results if there are not sufficient resources for
signing off irrelevant warnings.

6 Create design specifications For ISO
ISO26262 compliance, design specifications are
needed for both the software architecture (6-7.4.1-
7.4.5, T3) as well as for software units (6-8.4.2-8.4.4,
T8). Based on our experience, there is more need
to describe the software architecture due to the
increased complexity of the functionality. We have
noticed that the number of failures due to incorrect
interactions of software units has grown. As they
cannot be detected with unit tests, such failures are
detected late and their correction can be difficult
and expensive. The software architectural design
contributes to avoiding these failures by providing
an overview on the overall software and explaining
details on the context of the software units

For model-based development, the model itself can
be the unit specification. In this case, it should be
combined with supporting documentation describing
aspects that are not clearly defined by the model.

4.3 Implement Compliant Process

The last group of requirements contained in steps 7
to 10 mainly summarizes the previous steps and aims
at combining them into an efficient development pro-
cess supported by a seamless tool chain. The doc-



umentation of the development process and in par-
ticular the documentation of the interpretation of
ISO26262 requirements are of particular importance.
Documenting the decisions concerning the implemen-
tation of requirements relieves the development teams
from time-consuming reinterpreting of the ISO26262
requirements and allows them to focus on the devel-
opment and quality assurance activities.

7 Check unspecified functionality ISO26262 re-
quires analyzing of the software with respect to un-
specified functionality (6-10.4.7). Unspecified func-
tionality includes for example instrumentation code
or deactivated functions due to software variants.
ISO26262 does not require deletion of this code, but it
must have no impact on the safety requirements. This
activity can be addressed with corresponding tests but
also with manual reviews. Then, an argument must
be provided to explain how the deactivation is ensured
at runtime.

8 Adjust Tool Chain According to our experi-
ence, advanced development teams have strict guide-
lines and documentation for the usage of their tools,
e.g. they use fixed code generator settings, since the
search for failures resulting from different configura-
tions is time-consuming. Furthermore, ISO26262 re-
quires the qualification of tools: Such a qualification
consists of an assessment of a tools capability to in-
troduce failures and the potential for them to remain
unnoticed. Depending on the outcome of this assess-
ment, it may be necessary to e.g. validate the tool
with comprehensive tests.

9 Test Focus: Robustness & Resources Al-
though software is correct, a system may fail due
to hardware faults or incorrect usage of the software
(6-9.4.3, T10-1c,1d, 6-10.4.3, T13-1c,1d). Resource
usage tests validate non-functional properties of the
software such as execution times or resources such as
memory. Hence, executing these tests on a target pro-
cessor is a necessity. Fault injection tests address the
robustness of the software, i.e. they aim to validate
sufficient failure handling and can be executed in any
test environment.

10 Tailor Development Process We propose to
perform the tailoring of the development process sim-
ilar to a lessons learned session. Therefor, the se-
quence, dependencies and safety-relevance of the de-
velopment activities should be analyzed in order to de-
fine the development process. There is no restriction
concerning how the content of the ISO work prod-
ucts is combined in or spread over documents. Al-
though for ISO26262 compliance, a mapping of the
work products onto those required by the standard is
mandatory.

Our experience has shown that the documentation
of the development process is of particular impor-
tance. This should be the company-specific interpre-

tation of ISO26262, i.e. it should clearly define what
exactly needs to be done for ISO26262 compliance.
In other words, reading the process definition should
be sufficient for knowing how to proceed in the devel-
opment of software with an ASIL rating. We believe
that investing time and effort in the definition and
documentation of the development process is crucial.
A defined process with company specific regulations
concerning the implementation of ISO26262 require-
ments relieves the development team from considering
the standard itself. The documentation of decisions
regarding the interpretation of the standard allows
the developers to concentrate on the development and
quality assurance activities themselves.

5 Conclusions

In this paper we presented 10 steps how to achieve
ISO26262 compliance for model-based software devel-
opment projects. This strategy fulfills ISO26262 re-
quirements by using state-of-the art methods and ap-
proaches which are today applied by major OEMs and
suppliers of the automotive industry. The 10 steps
strategy is based on a prioritization of the require-
ments of ISO26262 with regard to their impact on the
quality of the software. We are convinced that such a
prioritizing is necessary in order to cope with the bud-
get constraints every team has to deal with. Our ap-
proach applies the project budget optimally for both:
addressing possible gaps in terms of ISO26262 compli-
ance as well as improving the quality of the software
to be developed.

Furthermore, there is a wide range of tools readily
available to facilitate the individual steps. Especially
tools for testing, guideline checking, and static analy-
sis offer many features for automating repetitive tasks,
such as test execution, back-to-back testing, guideline
checking, and standard-compliant reporting. In our
experience, these tools perform more efficiently and
are easier to use than internally developed solutions.

References

[1] dspace: Targetlink production code generator.
http://www.dspace.com/. Accessed: 2017-01-06.

[2] The mathworks. http://www.mathworks.com/

products. Accessed: 2017-01-06.

[3] ISO/TC 22. ISO/DIS 26262 road vehicles – func-
tional safety, 2011.

[4] Ines Fey and Ingo Stürmer. Quality assurance
methods for model-based development. In SAE
Technical Paper. SAE International, 04 2007.


